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INTRODUCTION 

Even those of us having an extensive aerodynamic 
library may be surprised to learn that the well-known 
elliptical wing develops somewhat less lift, and 
somewhat more induced drag, than we may have come 
to expect. These “shortcomings” of the elliptical wing 
(actually the literature) relative to the advertised 
performance were perhaps first pointed out by Sighard 
Hoerner in his well-known book “Fluid Dynamic Drag.” 
Herein we provide further substantiation thereof, and 
then extend our study of the elliptical wing to include the 
shape of its “planform wake” and the effects of ground 
proximity on induced drag, in all cases drawing from our 
2008 ESA Western Workshop presentation. 
 
We introduce a practical, two-dimensional approximation 
of wake rollup as seen in the plan view, then applied 
toward a top-level look at the formation flight of pelicans. 
Finally, we turn to ground effect, re-inventing “from 
scratch” the largely undocumented method used by 
Wieselsberger and Pohlhausen to compute the reduction 
of induced drag.  
 

1.0   ELLIPTICAL WING LIFT AND DRAG IN FREE AIR   

A wing kept well away from the ground is said to fly in 
“free air.” Test data thereof from three sources, diverse 
in both time and space, are shown in Figure 1.0-1 for 
elliptical wings of aspect ratio 5.0, 6.0, and 6.67. The 
data collapses to a single curve falling 10% below the 
well-known lifting-line prediction. In the figure, we have 
normalized the lift coefficient (cL) as a “group” which, 
given perfect agreement with theory, would reside 
precisely  on the plot “diagonal.” This lift group includes 

representative section efficiency () and wing aspect 
ratio (A). Wing angle of attack and section zero-lift 

inclination are designated (), respectively.  
 
Whereas we are indebted to Ludwig Prandtl and his 
young associate,  Max Munk, for development of the 
well-known lifting-line theory, we are also indebted to 
Klaus Krienes and Robert T. Jones for their more 
thorough analyses known as lifting-surface theory. The 
“efficiency” of an elliptical wing, in terms of the ratio of its 
lift via lifting-surface theory to that via lifting-line theory, is 
shown in Figure 1.0-2. Only for infinite aspect ratio do the 
two theories yield the same lift. Notice that the 
“efficiency” of Figure 1.0-2 for aspect ratio (A=5), 
predicts well the corresponding “shortfall” in Figure 1.0-1.  
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Experimental Data ~ Elliptical Wing Lift
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Figure 1.0-1  Elliptical Wing Lift Theory and Data 

 

Lift "Efficiency" of Elliptical Wings
Klaus Krienes, NACA TM 971 (p.29 and Fig. 4)
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Figure 1.0-2   Elliptical Wing Lift via Lifting Surface Theory 

 
In Figure 1.0-3 (next page), we characterize a “vortex 
drag group” for the test data which, given perfect 
agreement with theory, would lie on the plot diagonal. 
Again, we see a 10% reduction of performance. Yet 
notwithstanding the limitations of the lifting-line theory, it 
remains a powerful method which we will put to good use 
in our numerical analysis of induced drag later herein.  
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Experimental Data ~ Elliptical Wing Vortex Drag
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Figure 1.0-3   Elliptical Wing Vortex Drag ~ Theory and Data 
 

2.0   WAKE ROLLUP 

In this section take advantage of the classic work of 
Betz, Kaden, and Cone to provide an approximate 
characterization of the rate at which the wake of a wing 
rolls up. Here, our primary application is a top-level 
investigation of ground effect, where we ask: “In the 
formation flight of pelicans, is the wake from the lead bird 
essentially rolled up by the time it reaches the second 
bird?” To most expeditiously answer this question we 
limit ourselves to the appearance of the wake in the plan 
view. Based on the referenced papers, we propose the 
two-dimensional mathematical model of Figure 2.0-1 to 
approximate the shape of the “wake planform.” 
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Figure 2.0-1   Elliptical Wing Vortex Drag ~ Theory and Data 
 
Notice that the wake ultimately rolls up, in accordance 
with the theory of Betz, into a horseshoe vortex having a 

vortex-to-wing span ratio of (/4). Note also that both the 
non-dimensional distance and non-dimensional time are 
proportional to the lift coefficient and inversely 
proportional to the aspect ratio, whereby the wake rolls 
up relatively fast for a low-aspect-ratio wing at high lift.  
 

Now, to apply our model to the study of the formation 
flight of pelicans, we show various wings and their 
wakes, all drawn to scale, in Figure 2.0-2. If we assume 
that pelicans in formation are spaced longitudinally within 
one or two wingspans, we conclude from our analysis 
that those pelicans immediately following the lead 
pelican will experience very little wake-rollup effect. 
Figure 2.0-3 shows pelicans in free-air formation. 
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Figure 2.0-2   Wake Planform Studies 

 

 
Figure 2.0-3   Pelicans in Formation 

3.0   GROUND EFFECT 

We are indebted to Albert Betz for his method of images,  
whereby an aircraft in ground effect can be imagined to 
have an inverted twin beneath the ground (or water), with 
all bound and trailing vortices rotating opposite to their 
counterparts above the ground. As a result of the mutual 
interaction of all the vortices, the image aircraft induces 
both upwash and streamwash (the latter negative) upon 
its upper twin, resulting in increased lift, reduced 
airspeed, and a negative increment in pitching moment 
(nose-down effect). These phenomena are illustrated in 
Figure 3.0-1 using a horseshoe vortex representation.  
 
The classic analysis of induced drag in ground effect was 
carried out by C. Wieselsberger (NACA TM 77) with the 
aid of his assistant, K. Pohlhausen, and the suggestion 
of Ludwig Prandtl to assume that the loading remains 
elliptical as ground proximity increases (we show later 
herein that the wing tips are progressively unloaded, but 
Prandtl’s assumption introduces only a minor error). As 
happens often in scientific papers, the paper author 
delegated the actual computation to an assistant.  
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Figure 3.0-1   Vortex Interaction in Ground Effect 

 
Herein, we re-invent the calculations lost to Mr. 
Pohlhausen’s notebook, while following the top-level 
outline of the referenced paper. We study an isolated 
elliptical wing, integrating from wingtip-to-wingtip the 
upwash due to the mirror image. Before conducting the 
analysis, we can expect lift to increase and drag to 
decrease as the wing approaches the ground. But at this 
point we ask: “Does aspect ratio influence the reduction 
of induced drag for a given lift coefficient?”  
 
Although the details of the method are found in the 
Appendix for the benefit of the interested reader, we 
point out here the highlights of the method and its 
results. First, the analysis normalizes the local upwash 

velocity as a ratio (=u/vo) to freestream velocity. This 
upwash angle is further normalized as a ratio with the 

free-air downwash angle (o) which, for elliptical loading, 

is given by [cL/(A)]. When the normalized upwash is 
integrated (Appendix) and then plotted versus the non-
dimensional spanwise coordinate (Y=y/h) we obtain the 
family of curves shown in Figure 3.0-2. 
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Figure 3.0-2   Integrated Normalized Upwash in Ground Effect 

 

 
 
 
 
Here, an interesting characteristic is a “bounding box” 
with a lower limit representing free air (no upwash) and 
an upper limit representing lifting-line contact with the 
ground and total cancellation of free-air downwash, with  
induced drag vanishing in the limit. The curves in 
between represent various non-dimensional elevations 
(z/b) expressed in “wingspans.” These calculations, 
performed with the aid of a computer, agree well with the 
apparently laborious hand calculations carried out by 
Pohlhausen. We point out that our sign convention 
differs from that of Pohlhausen by treating both upwash 
and downwash as positive in their respective directions.  
 
Key results of the analysis include (a) wingtips are 
unloaded as [z/b] decreases and (b) the induced drag 
reduction is independent of aspect ratio. This last result 
is made more clear by Figure 3.0-3, showing the effect of 
ground proximity on induced drag. Our numerical method 
agrees not only with the calculations of Wieselsberger 
and Pohlhausen, but also with test data representing 
both elliptical and rectangular wings. Albert Betz’s 
method of images, and Prandtl’s elliptically-loaded wing 
concept have once again been validated. 
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Figure 3.0-3   Induced Drag Ratio in Ground Effect 

 



 

APPENDIX  Numerical Integration of Upwash in Ground Effect 

Y  y/h ; R  r/h ; Z  z/h 
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Upwash Integrand versus Span Position in Terms of the Glauert Coordinate (q) 

 


