
1

Trigons, Normals, and Quadragons  J. Philip Barnes        13 May 2008         www.esoaring.com
1

Pelican
Aero Group

J. Philip Barnes      
Presented at 2007 ESA Western Workshop

Trigons, Normals, and Quadragons
Vector-based Solutions to the Classic

Problems of Computer Graphics

A computer graphic (CG) image displays a three-dimensional (3D) object, as 
realistically as possible, on a 2D computer screen. In this presentation, we will 
demonstrate 3D geometry math modeling and visualization, including rendering 
at the individual pixel level. In so doing, we will introduce new alternatives to 
both classic and contemporary solutions to the classic problems of computer 
graphics. All of the “alternate” solutions herein are new. Whereas some offer 
additional insight and complement contemporary methods, others offer either 
increased computational efficiency or increased rendering accuracy.



2

Trigons, Normals, and Quadragons  J. Philip Barnes        13 May 2008         www.esoaring.com
2

Pelican
Aero Group

Overview

Presentation Contents
• “Flexible-cylinder” geometry grid 
• Geometry math modeling tools
• Vectors ~ history & key operations 
• Fast world-to-screen transformation
• Review & Supplement: Z-buffer algorithm 
• Vector solution : “Point-in-polygon” 
• Vector solution: Inter-vertex interpolation
• “Pyrometer” ambient lighting model
• Apply all herein ~ “TrigonoSoar”

Display a 3D-math-modeled shape on a 2D screen
Introduce  new solutions to several classic problems

This chart has no footnotes.



3

Trigons, Normals, and Quadragons  J. Philip Barnes        13 May 2008         www.esoaring.com
3

Pelican
Aero Group

“Flexible Cylinder” Geometry Grid
Computer graphics classic problem 1:

Generate and manage 3D geometry 
Arrays and Subscripts
Object (n), Row (i), Col (j),
Vertex (k), Quadragon (m)

λ

θλ
θ

z

x

y

Quadragon

Vertex
Normal

Vertex

A three-dimensional surface, whether for example a wing, toriod, or sphere, can be 
mapped as a flexible “distorted cylinder.” To “render” the object as a CG image, we 
will approximate its surface as an arrangement of “quadragons,” each having 
ranges of “latitude (λ)” and “longitude (θ),” and each having vertex normal vectors
pointing away from the surface.

With a system of arrays and subscripts thereof, we can keep track of quadragons, 
vertices, and normal vectors. Then, once we find ourselves more deeply involved in 
our CG calculations, we discover that we’ll need to determine the applicable trigon 
for each quadragon at hand, whereby the trigon will “inherit” many properties of its 
“parent.” Toward this end, the “type” declaration of Visual Basic proves invaluable. 
Herein, our graphics are rendered using only the VB “set pixel color” command. Our  
geometry definition and vector operations will consistently use the right-hand rule.  



4

Trigons, Normals, and Quadragons  J. Philip Barnes        13 May 2008         www.esoaring.com
4

Pelican
Aero Group

Geometry Math-model Building Blocks

Pseudo-Cosine

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ε ≡ y / ymax
= cos m (ηπ/2)

η ≡ x / xmax

m =   2.0      1.0            0.5

Exponential

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ε = e-5η m

Pseudo-Sine

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ε = sin (ηm π)

η

Varabola

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ε = η m

η

Here we plot several simple but powerful functions which can be used to construct 
building blocks for the 2D or 3D geometry of streamlined objects. In most cases, 
these functions have a normalized maximum “length” and/or “height,” each of which 
can be scaled to model the physical dimension at hand. In addition, these functions 
incorporate a variable exponent enabling shape adjustment, and more than one 
function can be added to build shapes of increasing complexity. For example, 
drawing from the modified trigonometric functions, the “pseudo-sine” with an 
exponent at or near 0.5 can be used to model the basic half thickness of an airfoil, 
with maximum “x” representing airfoil chord, and maximum “y” representing airfoil 
half thickness. Then, an additional smaller term, perhaps using a different function 
and/or exponent, can model a localized bump. 



5

Trigons, Normals, and Quadragons  J. Philip Barnes        13 May 2008         www.esoaring.com
5

Pelican
Aero Group

“TrigonoSoar” Math-modeled 3D Surface

• Trigonometric Math Modeled
• To be rendered with trigons
• Chord, thickness, twist, etc.

parametric along the spar
from centerline to winglet tip

x

z

y

We introduce here “TrigonoSoar,” a math-modeled object to which we will apply our 
new rendering methods later herein. TrigonoSoar is a blended wing with numerous 
geometrical parameters (such as backbone, chord, thickness, camber, and washout) 
modeled parametrically with 2D (y-z-planar) distance along the spar from centerline 
to winglet tip. Implementations of various modified trigonometric functions for 
geometry definition are evident in the plan and profile views.



6

Trigons, Normals, and Quadragons  J. Philip Barnes        13 May 2008         www.esoaring.com
6

Pelican
Aero Group

Math-modeled Aircraft   

Algebratross
Wandering Albatross

RegenoSoar
Regenerative-soarer

Here we illustrate more complex applications of the previously-described 
geometry building blocks. Both “Algebratross” and “RegenoSoar” are fully 
math modeled with such tools. 

“Algebratross” is a model of the wandering albatross, which uses its 3.5-m 
wingspan and dynamic soaring technique to remain aloft indefinitely over a 
waveless sea, without flapping its wings.

Whereas the albatross uses the vertical gradient of horizontal wind speed 
to remain aloft, the “RegenoSoar” regenerative-soaring aircraft remains 
aloft, potentially indefinitely at high altitudes, by using its propeller (having 
symmetrical blade sections) as a turbine to recharge stored energy 
whenever an updraft is encountered. 

As we next progress from “wireframe” to “rendered” computer graphics, we 
enter the world of “vectors” and “algorithms.” 



7

Trigons, Normals, and Quadragons  J. Philip Barnes        13 May 2008         www.esoaring.com
7

Pelican
Aero Group

“Viewing
Pyramid”
Base

(screen)

Fast World-to-Screen Transformation

1. cosχ = (ze-zf) / Ref ; sinψ = (xf-xe) / (Ref cosχ) ... 
2. Rotate globe by angle (ψ) about axis (y-ye)
3. Rotate globe by angle (χ) about axis (x-xe)
4. Optionally rotate (ζ) for “cockpit-roll” effect
5. Perspective projection yields screen  (x, y)p

Computer graphics
Classic Problem 2:
Convert 3D (x,y,z)
to 2D (x,y) screen

ζ

z-ze

eEye point
f p

Focus point

Any point

x-xe

χ

R ef

χ

f p Ref

ψ

y-ye

ψ
Ref

“Viewing Globe”
Radius, Ref 

We can imagine a 3D surface as a collection of “points” in space. This "second" 
classic problem CG is to place a given point (p) on the screen, given the 
coordinates of the eye point (e), focus point (f), and the point (p) itself. This task is 
greatly simplified if we imagine the observer to see the world through a hole in the 
apex of a “viewing pyramid” turned on its side. The viewing pyramid is of course a 
well-known idea in the world of CG, but our intent here is to apply the viewing 
pyramid concept with greater efficiency.

Let’s say the viewer initially looks due east, but now intends to focus on some point 
(f) which resides to the southeast at some different elevation. The observer could 
“pan” and then “pitch” the pyramid until the point (f) were centered on the “screen”
(pyramid base). However, an easier alternative (mathematically) is to leave the 
viewing pyramid fixed as the “viewing globe” of radius (Ref), centered at (e), is twice 
rotated for the same result. 

Relative to the standard “world-to-screen transformation” methods, this approach 
requires just two rotations, and no translations. Key to the method is carrying out 
such rotations about axes passing through the point (e), whereby the rotations 
operate on the coordinate differences (x-xe, y-ye, z-ze), not the (x,y,z) coordinates 
themselves. The third rotation is optional for “cockpit roll.”



8

Trigons, Normals, and Quadragons  J. Philip Barnes        13 May 2008         www.esoaring.com
8

Pelican
Aero Group

z

x

y
B

A

γ

C

c

ik

j

Unit vectors
a ≡ A / |A|
b ≡ B / |B|
c ≡ C / |C|

cos γ = a b
sin γ = |axb|

Vectors ~ Origin and Key Operations

J. Willard Gibbs Oliver Heaviside

We are immensely indebted to both Willard Gibbs and Oliver Heaviside, at 
the very least for their independent invention of vectors, which took place in 
the 19th century. However, both made many other significant contributions to 
math and science. Gibbs is perhaps best known for his analysis of available 
energy in thermodynamic and chemical processes. Heaviside took the 
original twenty equations of electro-magnetism published by Maxwell, and 
with the aid of new-found vectors and other powerful tools, condensed 
“Maxwell’s Equations” into just four.

Armed with this most powerful tool known as “vectors,” our computer 
graphics methods herein will make good use of the dot product, cross 
product, tip-to-tail addition, and scaling vector operations.



9

Trigons, Normals, and Quadragons  J. Philip Barnes        13 May 2008         www.esoaring.com
9

Pelican
Aero Group

Screen

Q’gon bounding box

Object bounding box

Review & Supplement: Z-buffer Rendering

Z-buffer (Edwin Catmull / Wolfgang Straβer,’74)
Initialize buffer: (zref) as “distant” at all pixels
Test object bounding box for screen overlap

Ok, test polygon bounding box for screen o’lap
Ok, test for at least one vertex normal visible

Ok, copy polygon to “surviving” group 
Next polygon
Next object

For each “surviving” polygon
Assess pixel-box corners (i,j)1 (i,j)2
For each pixel (i,j) of the pixel box 
Get screen coordinates (xp,yp) at (i,j)
Test for point-in-polygon

Ok, Inter-vertex interpolate (z) at (p)
Test for (z) closer than (zref) at (i,j)

Ok, Inter-vertex interpolate info. at (p)
Get diffuse & specular reflections at (p)
Set R,G,B and shade pixel (p)
Update (zref = z) for pixel (i,j)

Next pixel
Next “surviving” polygon

Pixel box

Pixel (p)

Here we provide a concise summary of the well-known “Z-buffer” rendering 
algorithm, while adding important supplementary steps. Along the way, we 
highlight in red those aspects of the algorithm which will make use of the newer 
methods herein, and point out where computational efficiency is most important. 
Although the z-buffer algorithm is carried out (after the world-to-screen 
transformation) in 2D screen coordinates, the goal of inter-vertex interpolation is to 
obtain the necessary 3D information for each applicable pixel. 

Ultimately, for every polygon fully or partially displayed on the screen, we must test 
every applicable pixel. In working our way from entire objects down to the pixel 
level, we first take the opportunity to avoid the myriad calculations for any object 
having a “bounding box” that doesn’t overlap the screen. The same exclusion test 
is applied to quadragons, ultimately yielding an applicable “pixel box,” within which 
we then test for “point in polygon.” Upon passing all tests, we are ready to 
interpolate key properties (i.e., z-coordinate), at the pixel (p), given the properties 
at the three vertices of the applicable trigon for the quadragon at hand. Finally, we 
compute the diffuse and specular reflections at the pixel and assign a pixel color.

Clearly, we should strive for the computational efficiency, particularly if a new 
image is to be displayed on the screen at perhaps 100 times per second, and/or 
when  a  computation resides in the innermost loop of the algorithm. Such is the 
case for both the “point-in-polygon” test and “inter-vertex interpolation.” We next 
propose efficient, vector-based solutions for these two classic problems.  



10

Trigons, Normals, and Quadragons  J. Philip Barnes        13 May 2008         www.esoaring.com
10

Pelican
Aero Group

The point (P) resides outside if, for any trigon vertex, or,
[Postulate] at least n-2 “n-gon” vertices,  (AB x AP)   k < 0

P

Q
x

y

A

BC

D

“Point-in-Polygon” Problem ~ Vector Solution 
Computer graphics classic problem 3:
After the world-to-screen transformation,   
is the point (P) inside the polygon?

AP
AB

AQ

Unit vector (k) points out of screen
Designate any vertex as (A), with:
Vector (AB) to the next vertex (B)
Vector (AP) to the point (P) inside
Vector  (AQ) to the point (Q) outside

AB x AP points out of the screen
AB x AQ points into the screen
Eureka!

Vertex (B): point is “outside”Classic:  Algebraic or trigonometric
Contemporary: Barycentric Coords.
Complementary alternative: Vectors

The classic solutions to the classic “Point-in-Polygon” problem often take a 
cumbersome algebraic form, or a trigonometric form which requires computations at 
all three or four vertices. The contemporary solution, which can often deem the point 
“outside” after interrogating just one vertex, makes use of barycentric coordinates
(BC). For the point (p), the BC method sequentially computes up to three barycentric 
coordinates (α, β, and γ = 1-α−β), and makes a quick exit, deeming the point (p) as 
“outside” upon finding any barycentric coordinate to be negative. Likewise, the new 
and alternate vector-based method above quickly “bows out” if the simple vector 
operation shown yields a negative scalar result.

We postulate the vector-based method as applicable to any “n-gon” whereupon (n-2) 
vertices yield the “point outside” result. The author learned of the BC approach only 
after this vector-based method was developed.



11

Trigons, Normals, and Quadragons  J. Philip Barnes        13 May 2008         www.esoaring.com
11

Pelican
Aero Group

Inter-vertex Interpolation ~ Vector Solution
Computer graphics classic problem 4:
Given geometry & optics at the vertices, 
interpolate the values thereof at point  (p)

x

y

p

o

2

3

1

4

Ro4 = Ro1 + R14 = Ro1 + α R1p
= Ro2 + R24 = Ro2 + β R23

Finally, interpolate at (p):
zp = z1 + [z2 + β (z3-z2) -z1] / α

Equate Ro4 (∆x) & (∆y) to get  α, β

Apply vector tip-to-tail addition & scaling
Solve for & store two “position parameters” 

( )( ) ( )( )
( ) ( ) ( ) ( )[ ]
( )( ) ( )( )[ ] δ−−−−−=β

δ−−−−−=α

−−−−−≡δ

/xxyyyyxx
/xxyyyyxx

xxyyyyxx

pp

pp

121121

32123212

321321

Classic method: “scan line” (comp. intensive)
Contemporary method: Barycentric Coords.
Complementary Alternative : Vectors

For polygon sorting, shading, and related operations, we need to interpolate 
between trigon vertices to determine the properties at a point (p) within the trigon. 
Relative to the traditional “scan-line” method, which must compute various 
distances, our new vector-based solution computes various differences. Only the 
latter avoid computationally-intensive square-root operations. 

The figure above illustrates the vector approach to obtain any property (such as z-
coordinate or light intensity) at the point (p), given that same property at each of the 
three vertices of the trigon. With the aid of tip-to-tail vector addition and scaling, the 
method solves “ahead of time” two simultaneous equations to yield two “location 
parameters” (α,β) which apply to the point (p) for the applicable trigon.

Those familiar with the contemporary approach (barycentric coordinates) will note 
both similarities to, and differences from, the formulas shown above. Although the 
BC method is perhaps more elegant, the vector-based method provides additional 
insight and illustrates the unity of mathematics, whereby totally different methods 
yield the same result. Again, the author learned of the BC method only after 
independently developing this vector-based approach. 



12

Trigons, Normals, and Quadragons  J. Philip Barnes        13 May 2008         www.esoaring.com
12

Pelican
Aero Group

“Pyrometer Model” of Ambient Lighting

Classic lighting model:  Uniform ambient
Then add illumination

Problem:
“Grey silhouette” until lights are added 

Poor foundation of total reflection model

Idea:
Vary ambient reflection with orientation

~ good visualization before illumination

Implementation:
Pyrometer measures skylight intensity
Rotated on it side ~ half the intensity
Inverted ~ zero intensity  (@ albedo=0) 

Computer graphics classic problem 5:
Model ambient light before illumination

Pyrometer Disk

Sun shade

Define:
Pyrometer tilt angle (τ)
Ground albedo (α)

Ambient Reflectance
ρ = 1 - τ/π + α τ/π

We have now arrived at the point where we are ready to “shade the pixel.” The 
established shading models, including some which are quite complex, usually 
begin with an “ambient” light intensity before illuminating the scene with one or 
more lights. However, such modeling depends on illumination for surface 
definition. Prior to illumination, the uniform ambient model applies a uniform 
“shade of gray” to the  object on the screen. Since our objective is to most 
accurately simulate all reflections acting together, it would appear that “fixed 
ambient” modeling lays a poor foundation for subsequent illumination.   

Thus, here we intentionally delay illumination until a more satisfactory ambient 
lighting model is in place. In so doing, we introduce the scientific instrument 
known as a “pyrometer,” used to measure the intensity of diffuse skylight. The 
pyrometer, kept shielded from the sun, would register half the normal intensity if 
turned on its side (assuming for the moment a ground albedo of zero). If 
inverted, the pyrometer would register zero light intensity, again assuming zero 
ground albedo.

For our “pyrometer” ambient lighting model, we imagine each quadragon (or 
local point therein) to be a tiny pyrometer. If the local normal vector points “up,” 
the pixel will reflect the maximum ambient light intensity. Ground albedo is 
adjustable in the model, which although quite simple, nonetheless represents a 
major improvement over fixed ambient lighting. This is apparent in the next 
slide, where we render “TrigonoSoar” with only ambient light. Note that such 
ambient light reflection will, and should, remain the same regardless of the 
position of lights, once such lights are added. 



13

Trigons, Normals, and Quadragons  J. Philip Barnes        13 May 2008         www.esoaring.com
13

Pelican
Aero Group

TrigonoSoar ~ All Methods Herein Applied

Uniform Ambient

“Pyrometer”
Ambient Model

Ground
Albedo = 0.5

Ground
Albedo = 0.0

This slide has no footnotes.



14

Trigons, Normals, and Quadragons  J. Philip Barnes        13 May 2008         www.esoaring.com
14

Pelican
Aero Group

TrigonoSoar ~ Standard Illumination Added

This slide has no footnotes.



15

Trigons, Normals, and Quadragons  J. Philip Barnes        13 May 2008         www.esoaring.com
15

Pelican
Aero Group

Summary ~ Trigons, Normals, and Quadragons

New Solutions to several classic problems of CG

Complementary, faster, or better

• World-to-screen transformation ~ just two rotations

• Point-in-polygon ~ vector solution with “quick exit”

• Interpolation at point (p) ~ differences, not distances

• “Pyrometer” ambient ~ do best before illumination



16

Trigons, Normals, and Quadragons  J. Philip Barnes        13 May 2008         www.esoaring.com
16

Pelican
Aero Group

Phil Barnes has a Bachelor’s Degree in 
Mechanical Engineering from the University 
of Arizona and a Master’s Degree in 
Aerospace Engineering from Cal Poly 
Pomona. He has 28-years of experience in 
performance analysis and computer 
modeling of aerospace vehicles, engines, 
and subsystems, primarily at Northrop 
Grumman. He has authored SAE technical 
papers on aerodynamics, dynamic soaring, 
and regenerative soaring. This latest 
presentation brings together Phil’s 
knowledge and passions for computer 
graphics, geometry math modeling, and 
soaring flight.

Email: PelicanAG@AOL.com

About the Author


